Neutral and selection-driven decay of sexual traits in asexual stick insects.
نویسندگان
چکیده
Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift.
منابع مشابه
Decay of Sexual Trait Genes in an Asexual Parasitoid Wasp
Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the los...
متن کاملDeleterious mutation accumulation in asexual Timema stick insects.
Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this predi...
متن کاملMolecular Evidence for Ancient Asexuality in Timema Stick Insects
Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, bu...
متن کاملMultiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phyl...
متن کاملRarity of males in pea aphids results in mutational decay.
When females can reproduce without males, do males become an evolutionarily weaker sex whose genes experience mutational decay? We addressed this hypothesis in aphids, whose reproduction alternates between parthenogenetic and sexual forms: Over the course of a year, there can be 10 to 20 generations of asexual females but only a single, if any, generation with males. We used microarray analyses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1764 شماره
صفحات -
تاریخ انتشار 2013